sexta-feira, 8 de outubro de 2010

Avaliação em Campo de Buchas de Transformadores - Parte 3

MEDIDA DE CAPACITÂNCIA, FATOR DE POTÊNCIA E FATOR DE DISSIPAÇÃO COM VARIAÇÃO DE FREQÜÊNCIA

Medida da Capacitância (C) e Fator de Dissipação (FD) está estabelecida como um importante método de diagnóstico de isolamento, primeiramente publicado por Schering em 1919 e utilizado para esse propósito em 1924.
Neste trabalho utilizou um sistema de teste, chamado CPC100+CPTD1, da Omicron eletronics, que utiliza um método similar àquele da ponte Schering.
A principal diferença deste sistema com os equipamentos similares no mercado é que não necessita de ajustes para medição da Capacitância e do Fator de Dissipação.
A capacitância de referência da ponte Cn é proveniente de um capacitor de referência isolado a gás com perdas abaixo de 10E-5. Para uso em laboratório, tais capacitores são regularmente utilizados para obter medições precisas, já que as condições climáticas são bem constantes. Não é o caso para medições em campo onde as temperaturas podem variar significativamente, causando dilatação e contração do eletrodo no capacitor de referência.

O sistema de teste leva todos esses fatores em consideração e os compensa eletronicamente. Assim é possível realizar facilmente no campo testes para Fator de Dissipação igual a 5 x 10E-5.

AVALIAÇÃO DO ISOLAMENTO COM VARIAÇÃO DE FREQÜÊNCIA

Até os dias de hoje, o fator de dissipação ou o fator de potência só foram medidos na freqüência da linha. Com a fonte de potência do equipamento utilizado neste trabalho é possível agora fazer essas medições de isolamento em uma larga faixa de freqüência. Além da possibilidade de aplicar uma larga faixa de freqüência, as medições podem ser feitas em freqüências diferentes da freqüência da linha e seus harmônicos. Com este princípio, as medições podem ser realizadas também na presença de alta interferência eletromagnética em subestações de alta tensão.
A faixa utilizada varia de 15 a 400 Hz. Os testes podem ser realizados sem problemas, pois, nesta faixa de freqüências, as capacitâncias e indutâncias do sistema elétrico testado são praticamente constantes.
Para avaliarmos o isolamento, devemos considerar que o dielétrico perde sua capacidade de isolar devido a:
• Movimento de íons e elétrons (corrente de fuga)
• Perdas por causa do efeito da polarização

Perdas por Corrente de Fuga Superficial
A perda por movimento de elétrons, ou seja, por corrente de fuga no isolamento é dependente da freqüência da tensão aplicada no isolamento. Este fenômeno ocorre devido ao efeito pelicular, como exposto anteriormente, é o fenômeno responsável pelo aumento da resistência aparente de um condutor elétrico em função do aumento da freqüência da corrente elétrica que o percorre.
Quando se aplica uma tensão contínua nas extremidades de um condutor elétrico, a corrente elétrica se distribui de forma uniforme ao longo de toda a seção reta deste condutor. No caso da aplicação de tensão alternada, o efeito da passagem da corrente alternada é diferente.
À medida que a freqüência da corrente que percorre o condutor aumenta o campo magnético junto ao centro do condutor também aumenta conduzindo ao aumento da reatância local.
Este aumento de reatância leva a corrente tender a, preferencialmente, deslocar-se pela periferia do condutor. Isto implica uma diminuição da área efetiva do condutor e logo um aumento da sua resistência aparente. Podemos assim concluir que a resistência medida em corrente alternada de um determinado condutor aumenta à medida que aumenta o valor da freqüência da corrente que percorre esse condutor.
O aumento da freqüência implica no aumento da corrente na superfície do elemento dielétrico, e conseqüentemente, a possibilidade do estabelecimento de correntes de fuga neste isolamento.

Continua....

Nenhum comentário:

Postar um comentário